If it's not what You are looking for type in the equation solver your own equation and let us solve it.
336-x^2=0
We add all the numbers together, and all the variables
-1x^2+336=0
a = -1; b = 0; c = +336;
Δ = b2-4ac
Δ = 02-4·(-1)·336
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{21}}{2*-1}=\frac{0-8\sqrt{21}}{-2} =-\frac{8\sqrt{21}}{-2} =-\frac{4\sqrt{21}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{21}}{2*-1}=\frac{0+8\sqrt{21}}{-2} =\frac{8\sqrt{21}}{-2} =\frac{4\sqrt{21}}{-1} $
| (8+2)x=8x+2x | | 3/6=u/4 | | .5x+4=2/3x | | R/2+4m=24 | | 4x-5=2x=7 | | 5+x+7x=53 | | w/3.75=3 | | 4(x–5)=18 | | 2x/54=x | | 4a/2a=2 | | 40x+15x=1950 | | -8(1-7x)+4=-8-6x | | 4z+9+(2z)=129 | | -5+5y=-25 | | 6x-12=11x | | X=3x+.5 | | 2/x=5/17 | | 12(1+5)=13y+58 | | 10x-2(4x-3)=-5(x+1)+13 | | 6+v/3=27 | | -8(4x-6)=3(-10x-10) | | 4x(x+7)=-20 | | 11-2a=3(a+1) | | 1/4=1+1/2y | | 3x+12=3x=12 | | 3x+1*x=24 | | 140=5x+7x+8 | | 4b=-2|3 | | 3n-5=13-n | | 15.67x+23=1.56+45.8x | | 3(r-4)+7=11 | | 4(6-d)=2d |